Event-Based Modeling of Driver Yielding Behavior to Pedestrians at Two-Lane Roundabout Approaches

Katy Salamati
Bastian Schroeder, Duane Geruschat, Nagui Rouphail
STRIDE Conference
April 5th, 2013
Orlando FL.

Department of Civil, Construction and Environmental Engineering
North Carolina State University
Background

• Roundabouts
 – Safety and operational benefits for vehicles
 – Increasing trend in building multi-lane roundabouts

• Pedestrians at Roundabouts
 – Accessibility issues
 – Crossing is not signalized
 – Motorists fail to yield to pedestrians
Objective and Motivation

• Objective:
 – Understanding driver decision of yielding to pedestrians
 • Contributing factors that increase probability of driver yielding
 – Controlling for pedestrian behavior
 • Staged pedestrian crossing

• Application:
 – Regression models to be implemented in Simulation for Pedestrian-vehicle interaction at unsignalized crossings
 – Roundabout traffic dynamics and design
 – Site specific factors
Study Locations

- Raleigh, NC
- Carmel, IN
- Nashville, TN
- Annapolis, MD
- Towson, MD
- Winston-Salem, NC
Equipment Set up and Data Collection

Observing driver yielding to staged pedestrians

Data Collection Sheet
Data Collection Protocol

• Microscopic traffic characteristics:
 – Interaction of first arriving vehicle with pedestrian:
 • Speed (SPD), lane location (FAR), in platoon (PLT), if already stopped (STP), other pedestrians present (MUP), heavy vehicle (HGV), right-turning vehicle (RT, for Exit), downstream conflict (DSC, for Entry)
 – Pedestrian Behavior
 • Blind or sighted (CN), pedestrian location: at the curb or in the crosswalk (FT)
 – Response Variable:
 • If first vehicle yielded (YIELD)
Model Development

- Probability of driver yielding to pedestrians (Schroeder, Rouphail, 2011): Binary logistic regression model

\[
\text{Logit} \left[P(Y = 1) \right] = \log\left(\frac{P(Y = 1)}{1 - P(Y = 1)} \right) = \beta_0 + \sum_{i=1}^{m} \beta_i x_i
\]

- \(Y \): Driver Yielding (Binary outcome)
- \(P(Y=1) \): Probability of driver yielding
- \(\beta_0 \): Intercept
- \(\beta_i \): Parameter describing the effects of \(m \) explanatory variables \(x_i \) on the yield response
Results: Regression Models

- Significant Factors
 - Entry vs. Exit,
 - Speed,
 - Lane location,
 - White Cane,
 - Site specific characteristics

<table>
<thead>
<tr>
<th></th>
<th>P(Yield)-All</th>
<th>P(Yield)-Entry</th>
<th>P(Yield)-Exit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Estimate</td>
<td>Odds Ratio</td>
<td>Estimate</td>
</tr>
<tr>
<td>Intercept</td>
<td>1.74</td>
<td>-</td>
<td>2.00</td>
</tr>
<tr>
<td>DSC</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SPD</td>
<td>-0.10</td>
<td>0.91</td>
<td>-0.32</td>
</tr>
<tr>
<td>FAR</td>
<td>-1.22</td>
<td>0.30</td>
<td>-1.31</td>
</tr>
<tr>
<td>RT</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>PLT</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MUP</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CN</td>
<td>1.41</td>
<td>4.09</td>
<td>1.62</td>
</tr>
<tr>
<td>FT</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ST_RAL</td>
<td>-0.66</td>
<td>0.52</td>
<td>-1.35</td>
</tr>
<tr>
<td>ST_NASH</td>
<td>-1.10</td>
<td>0.34</td>
<td>-1.93</td>
</tr>
<tr>
<td>ST_SLM</td>
<td>1.22</td>
<td>3.07</td>
<td>1.14</td>
</tr>
<tr>
<td>ST_ANN</td>
<td>0.94</td>
<td>2.57</td>
<td>-</td>
</tr>
<tr>
<td>ST_TSN</td>
<td>-2.27</td>
<td>0.10</td>
<td>-</td>
</tr>
<tr>
<td>AIC</td>
<td>734.606</td>
<td></td>
<td>395.837</td>
</tr>
<tr>
<td>-2logL</td>
<td>716.606</td>
<td></td>
<td>381.837</td>
</tr>
<tr>
<td>R²</td>
<td>0.3026</td>
<td></td>
<td>0.34</td>
</tr>
<tr>
<td>Max-rescaled R²</td>
<td>0.429</td>
<td></td>
<td>0.457</td>
</tr>
</tbody>
</table>

*p<0.001 b p<0.05

Speed: Entry: OR=0.91, Exit: OR=0.73
White Cane: Entry: OR=5.06, Exit: OR=3.74
Results: Regression Models

- \(P(\text{Yield}) = 0.55 \)
- \(P(\text{Yield}) = 0.25 \)
- \(P(\text{Yield}) = 0.20 \)
- \(P(\text{Yield}) = 0.10 \)
Effect of Site Specific Characteristics

- ANN: $P(\text{Yield}) = 0.80$
- IN, NASH, TSN: $P(\text{Yield}) = 0.50$
- RAL: $P(\text{Yield}) = 0.20$
- SLM: $P(\text{Yield}) = 0.10$
- TSN: $P(\text{Yield}) = 0.25$
- ANN: $P(\text{Yield}) = 0.10$
- IND, NASH, SLM, RAL: $P(\text{Yield}) = 0$
Conclusion

• The probability of yielding decreases as speed increases
• Yielding rates at the entry are generally higher compared to exit
• Drivers have higher yielding rates to pedestrian carrying a white cane
• Site specific characteristics are significant in modeling the propensity of driver yielding to pedestrians