Quantifying Emissions Impacts of a Transportation Improvement Project involving Road Re-alignment and Conversion to a Multi-Lane Roundabout

Abseen Anya
Nagui Roupahil, PhD
H. Chris Frey, PhD

April 5, 2013
Outline

• Motivation
• Objectives
• Study Site
• Methodology
• Results
• Conclusions
Motivation

• On-road mobile sources of emissions account for 45% of total CO and 35% of total NO$_x$ in the United States

• Inconclusive results whether roundabouts reduce emissions

• Roundabouts are rarely installed in isolation

• Emission impacts of Transportation Improvement Projects (TIPs) are typically not validated by empirical “before and after” studies
Objectives

• Use empirical vehicle activity data to quantify emissions before and after a TIP, while accounting for joint simultaneous effects of all corridor-level changes
• Determine whether the installation of the multi-lane roundabout contributed to the change in environmental performance after the TIP.
Study Site - After

A

B

C
Methodology – Field Data

- Portable Emissions Measurement System
- GPS data
- On-board Diagnostics (OBD) data
Methodology - Vehicle Activity

Pre-TIP

Speed (mph)

Distance (mi)

Post-TIP

Speed (mph)

Distance (mi)

Woodburn Rd. Oberlin Rd. Pullen Rd. Founders Dr.
Methodology - VSP Modal Approach

• Vehicle Specific Power (kW/ton) – instantaneous power per unit mass of vehicle

\[
VSP = v \left(1.1a + 9.81 \left(\sin(\tan^{-1}(r)) \right) + 0.132 \right) + 3.02 \times 10^{-4} v^3
\]

\(v = \text{velocity (m/s)}; \ a = \text{acceleration (m/s}^2\); \ r = \text{road grade}\n
• 14 VSP bins – Frey et al. (2002)

• Average Modal Emission Factors for NO, HC, CO and CO\(_2\) -- PEMS data from 42 LDGVs

\[
\text{Total Emissions}_{ki} = \sum_{j=1}^{14} EF_{ij} \times t_{kj} \quad \text{for} \ i = 1,2,3,4
\]
Methodology - Study Design

• 4 turning movements
• 4 time periods
 • AM Off-peak (9.00am – 11.59am)
 • Lunch (12.00 noon – 12.59pm)
 • PM Off-peak (1.00pm – 4.29 pm; 6.00pm – 7.59am)
 • PM Peak (4.30 pm – 5.59pm)
• 2 levels of Analysis:
 • Corridor-level
 • Intersection-level
Results

• Corridor level results:

![Graph showing NO (mg/mi) for C to B, A to B, B to A, and B to C turning movements.]

• Intersection level results:

<table>
<thead>
<tr>
<th>Turning Movement (Fig 1)</th>
<th>NO</th>
<th>HC</th>
<th>CO</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/mi</td>
<td>mg/s</td>
<td>mg/mi</td>
<td>mg/s</td>
</tr>
<tr>
<td>C to B</td>
<td>-17%</td>
<td>4%</td>
<td>-24%</td>
<td>1%</td>
</tr>
<tr>
<td>B to C</td>
<td>-65%</td>
<td>49%</td>
<td>-69%</td>
<td>28%</td>
</tr>
</tbody>
</table>

Pre-TIP | Post-TIP
Conclusions

• At the corridor level the TIP improved the environmental performance of the site although in most cases, the improvement was not statistically significant.

• Direct comparison between 2 turning movements at the intersection level showed that emissions per unit distance were relatively lower after installation of the multi-lane roundabout.

• Empirical framework for comparison of emissions before and after TIPs involving roundabout retrofits.
Acknowledgement

This research has been funded wholly by the U.S. Environmental Protection Agency's STAR program through EPA Assistance ID No. RD-3 3 83455001.
Thank you!

Abseen Anya, BSCE, EIT
Graduate Research Assistant
Institute for Transportation Research & Education
Campus Box 8601
Raleigh, NC 27695
901.359.0169
aranya@ncsu.edu